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Abstract 

Wind turbine power curve (WTPC) modelling is of great importance for energy assessment 

and forecasting. In previous works, WTPC models were developed based on wind speed only. 

However, in this research, we developed modelling methods that represent actual WTPC by 

extensively considering wind farms’ topography, and several field conditions (other than wind 

speed only) that are found to influence the power output of wind turbines such as climate 

variability, the effect of neighbouring wind turbines, turbulence intensity, wake effect, ambient 

temperature, atmospheric pressure, wind direction, and terrain conditions. We analyze the 

radial basis function (RBF) and multi-layer perceptron (MLP) architectures for sensitivity and 

modelling accuracy. A filtered dataset is passed into the models and fitting accuracies are 

computed alongside sensitivity analysis. The best-performing models are compared with 

numerous parametric and non-parametric WTPC modeling schemes. It is found that the 

quantile filtering (QF-NN) models outperforms all other models in terms of fitting accuracy, 

and outperforms all selected hybrid models in terms of computation time. 
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1 Introduction 

The demand for energy rises astronomically as countries develop [1, 2]. Industrialized nations 

making up only a fourth part of the world’s population, utilize four-fifths of the world’s energy. 

In most developed countries, fossil fuels are the primary source of energy; nevertheless, the 

usage of renewable energy has increased, and there are on-going plans to replace fossil fuels 

with renewable energy. Due to environmental consequences associated with fossil fuels 

utilization (greenhouse gas emissions), rising energy demands with the ever-increasing 

population, the need to switch to alternative energy sources is inevitable [3-6]. Actions must 

also be taken to improve the energy efficiency of production and consumption patterns, as well 

as to encourage the adoption of low-carbon technologies. The deployment of renewable energy 

technologies has been found to be a significant alternative for reducing GHG emissions, which 

contribute to global warming [7]. They currently meet 14% of total global energy demand [8]. 

Wind energy is one of the fastest-growing renewable sources of energy. In the last decade, the 

number of wind farms increased significantly [9]. The world installed wind energy capacity 

has improved from 1.29GW in 1995 [10] to 837GW at the end of 2015 [11]. This progressive 

increase in deployment of the technology, calls for the need for an efficient method of wind 

energy assessment. 

The theoretical power output (P) of a wind turbine (WT) is given by the mathematical 

expression below: 

 

𝑃 =
1

2
𝐶𝑃(𝜆, 𝛽)𝜌𝐴𝜐3

 

 

(1) 

where 𝐶𝑃(𝜆, 𝛽) is the power coefficient, λ and β are the tip-speed ratio and blade pitch angle 

respectively, ρ is the air density, A is the rotor swept area, and υ is the wind speed [12]. The 

main factor influencing the power generated is the wind speed, which exhibits a cubic 

relationship with the power, and varies significantly with height. Other factors may include 

wind direction, blade pitch angle, rotor dimensions, air density etc. The wind turbine power 

curve (WTPC) (Figure 1), is a graph that shows the relationship between a given wind speed, 

and the electrical power generated for a specific wind turbine; the corresponding electrical 

power delineates the performance of the wind turbine. The WTPC is specific to a particular 

brand of wind turbines. The minimum speed at which the turbine delivers useful power is 

regarded as the cut-in wind speed (Vc). The rated wind speed (Vr) is the wind speed at which 

the rated power is obtained; this is also the maximum output power of the electrical generator. 

The cut-out wind speed (Vf) is the highest speed at which a wind turbine may produce power, 
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as determined by engineering design and safety considerations [13]. The pitch, yaw, and stall 

control are three methods that are used to control the speed of wind turbine in order to prevent 

damage [14]. 

The theoretical power curve of a wind turbine as provided by the manufacturer, is 

calculated under the ideal, ignoring actual field conditions such as climate variability, effect of 

neighboring wind turbines and turbine inertia [12]. The actual power curve differs from a single 

line power curve due to the variables associated with power production on the field. Some of 

these variables are: turbulence intensity, wake effect, ambient temperature, atmospheric 

pressure, and wind direction. 

 

1.1 General Objectives of WTPC Modelling 

In general, the objectives of wind turbine power curve modelling are briefly discussed below: 

1. Choice of wind turbines: Wind generators have their different power output at a given 

wind speed; hence, WTPC models are a useful tool that will assist wind farm developers 

to select appropriate generators for maximum efficiency. An important finding in 

literature is that judicious choice of wind turbine generator that yields higher accuracy 

can be achieved by utilizing the normalized power curve in the selection process [15]. 

2. Wind energy assessment and prediction: The wind potential of any site is a function of 

the prevailing wind speed at a given hub height [14]. Accurate assessments of wind 

resource are therefore integral to the successful development of wind farms. If the wind 

speed data of the site is obtained, a WTPC can be utilized for the estimation of the wind 

energy generated over a period of time [9]. Accurate WTPC models also assist the 

planning and expansion of wind farms [16]. 

3. Monitoring and troubleshooting: WTPC can be used for monitoring the performance of 

wind turbines in a wind farm [17]. A power curve obtained from available data or some 

methods that represents the performance of the wind turbines under normally operating 

conditions is used as the ground truth. The actual curve of wind turbines in the wind 

farm is compared with the ground truth curve. A reasonable deviation between the two 

curves indicate underperformance and faults [18]. Quality control charts are created 

from the data obtained to aid the detection and diagnosis of faulty functioning of the 

wind turbine, or the wind farm [13]. 

4. Predictive control and optimization: Wind turbines’ performances can be assessed 

using WTPC, and thereafter developing reliable indicators for component diagnostics 
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and prognostics. Hence, using condition-based monitoring rather than hour-based 

monitoring can result in higher reliability and cheaper maintenance costs [19]. 

1.2 Approaches to WTPC Modelling 

There are generally four approaches to WTPC modelling. These include discrete approach, 

stochastic approach, non-parametric or physics-based approach, and parametric or data-driven 

approach. 

1. Discrete methods consist of modelling a continuous process by making discrete 

approximations [20]. One method is by dividing wind speed into intervals and obtaining 

a generic power value for each interval. Within this category falls the IEC-61400-12-1 

standard. It discretises the wind speed range into bins of 0.5 m/s in size, all the υ and P 

for each data point within a bin is averaged to obtain the (υ, P) pair for each bin [21]. 

In this evaluation technique, air density is implicitly considered as input with wind 

speed and power being the output. This method takes into account the non-linear 

relationship between υ and P but a large number of measured data is required for 

improved accuracy [22]. In Llombart et al. [23] modifications were made to the IEC 

61400-12 bins method with the aim of improving the accuracy; when compared to the 

initial bins method, their work achieved improved accuracy. 

2. The Markov chain theory is the prevailing stochastic model for the analysis of a wind 

turbine power output. In Gottschall and Peinke [24], the dynamic behavior of the wind 

turbine was analyzed with respect to a stochastic signal comprising wind speed and 

turbulence intensity, thereby yielding power curves independent of turbulence 

intensity. Another advantage is that the power curve can be obtained within a few days; 

its disadvantage is that no other parameters are considered other than wind speed and 

turbulence intensity [20].  

3. Parametric models or physics-based models are developed from a set of mathematical 

equations that includes a set of parameters that must dynamically adapt through a set 

of continuous data. They are generally developed from linear, non-linear, polynomial 

and differential equation [20]. In Shokrzadeh [25], a penalized spline regression was 

used in modelling the WTPC, it resulted in a better performance relative to the other 

tested models. In Marčiukaitis [26], a non-linear regression functions are used to model 

the WTPC; the models input is the wind speed while the wind direction is used to vary 

the curve. Kusiak and Verma [27], in their work scales this method for implementation 

in the entire wind farm by the utilization of wind direction specific operational curves. 
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In Pinson et al., [28], a simple and adjustable double exponential function was used in 

modelling WTPC. A 3-parameter [29], 4-parameter [30], 5-parameter [31], and 6-

parameter [32] logistic functions have been used in modelling WTPC. The accuracy of 

a logistic function was found to improve with increasing parameters. A 9-parameter 

hyperbolic tangent function has also been employed in Taslimi-Renani et al. [33], in a 

bid to improve the accuracy. Though parametric models may contain many free 

parameters that can fit the data, they have a few limitations, they have a fixed form and 

are rigid, they are complex to use, and they form less accurate wind power curve models 

compared to their non-parametric counterpart [12]. 

4. Due to the availability of supervisory control and data acquisition (SCADA) data that 

enable the access to tremendous amount of data, models that consider the non-linear 

relationship between features regarded as input parameters and the output power can 

thus be developed. Hence, rather than a mathematical approach, a data driven approach 

is required. There are currently a few data approaches available to researchers. From 

available research, the cubic spline method [34] and computational intelligent (CI) 

approaches such as the Gaussian process [35], Bayesian-based methods [36], support 

vector regression methods [10], hybrid relevant vector methods [37], monotonic 

regression [38], heuristic and metaheuristic methods [31, 39] and artificial neural 

network (ANN) methods [12, 20, 22, 35]. Generally, non-parametric models are more 

flexible, precise, and are computationally expensive. Quite a large number of hybrid 

models have been implemented due to the need for outlier filtration before utilizing 

dataset for model creation, because non-parametric models are only as good as the 

available data [35]. 

Least square and cubic spline interpolation methods were utilized in modelling the 

actual power of a wind turbine utilizing wind speed as input in Thapar et al. [34]. This 

method achieves comparably moderate accuracy and neglects other input parameters 

that influence the actual power curve. In Manobel et al. [35], a hybrid model based on 

Gaussian filtering and ANN was employed in modelling the actual power curve. In 

general, ANN models yield comparably higher accuracies than other CI models because 

they try to reduce prediction losses through back propagation; however, only wind 

speed is used as input parameter, and the utilization of hybrid models invariably 

increase computational cost. The Bayesian method and multi-kernel regression were 

employed in Wang et al. [36]. The aim of the work was to achieve both a deterministic 
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and probabilistic power output. A merger of both the deterministic and probabilistic 

power curve is the ideal power curve for power prediction; however, only the wind 

speed was utilized in the model creation. In Pandit and Infield [10], a dataset filtered 

by binning was fed into a support vector regression model with moderate accuracy. 

Monotonic regression was utilized for WTPC modelling in Mehrjoo et al. [38]. A 

temperature considerate power curve was obtained in Rodríguez-López et al. [7], 

utilizing fuzzy logic and ANN. The input parameters are wind speed and ambient 

temperature yielding a more realistic power curve. However, other influencing 

parameters were not considered. In Xu et al. [22], a quantile based power curve is 

obtained by using ANN. Power curves for nine user defined quantiles are obtained and 

plotted, with the collective defining the possible range of power output. This method is 

relevant for wind farm monitoring, but not suitable for energy assessment and 

prediction. It also only takes wind speed as input. A Tabu search non-symmetric fuzzy 

mean (TS-NSFM) approach combined with a RBF neural network was used in 

modelling the WTPC in the work of Karamichailidou et al. [12]. Four input parameters 

were utilized (wind speed, wind direction, blade pitch angle, and ambient temperature), 

cluster centres and weights were obtained from the TS-NSFM algorithm, and then fed 

into the RBF network. Modelling accuracy is greatly improved; however, the triple 

hybrid model is extremely computationally expensive. 

 

We found all models utilized in literature to generally develop power curves without 

considerations to wind farm topography and field conditions. However, several factors have 

been found to influence the power output of wind turbines such as climate variability, effect of 

neighbouring wind turbines, turbulence intensity, wake effect, ambient temperature, 

atmospheric pressure, wind direction and terrain conditions. This work therefore aims at 

developing a power curve model that accurately represents the actual field conditions of wind 

turbines in wind farms by considering all mentioned influencing factors. This work considers 

climate variability by analysing a time series plot of wind speed over four years to capture all 

climate conditions. The effect of neighbouring wind turbines, turbulence intensity and wake 

effect, is achieved by analysing the relative position of turbines on the wind farms to capture 

the various flow characteristics, while an assessment of the terrain map was carried out to 

account for disparate land formation. In addition, other than using wind speed as the only 

variable for the WTPC model as done in past works, we utilized several other variables 
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alongside wind speed including ambient temperature, wind direction, and atmospheric pressure 

to develop the model in this work. We further provided an assessment of the accuracy and 

sensitivity of the two non-parametric approaches including RBF and MLP, that we utilized for 

the WTPC modelling. The developed model is wind farm specific, generic to all turbines within 

the wind farm regardless of local orography, and invariant with geographical seasons. Lastly, 

the accuracy of our models was compared with various parametric and non-parametric models 

in literature [1, 12, 35, 55], to validate their performances. 

2. Material and Methods 

2.1 Data Description 

Two wind farms were considered for this work including: Kelmarsh wind farm located 

near Haselbach, Northamptonshire in the UK at latitude 52o 24’ 5.8”, longitude -0o 56’ 34.6” 

(comprising six 2.05MV Senvion MM92 turbines [40] [see Supplementary data [A], for the 

dataset]), and Penmanshiel wind farm located near Grantshouse in the Scottish Borders, UK at 

latitude 55o 52’ 16.2”, longitude -2o 21’16.2” (comprising 14 Senvion MM82’ turbines [41] 

[see Supplementary data [B], for the dataset]). A 10-minutes SCADA data, ranging from mid- 

2016 to mid-2021, was obtained for six turbines from the two wind farms (three turbines from 

each wind farm) for modelling. The turbines were selected based on their relative position on 

the wind farms: top, midway, and bottom, and based on the terrain in which they fall. Six 

different turbine SCADA data were utilized for modelling.  

A total of four parameters were required for modelling. These include: density 

normalised wind speed, wind direction, blade pitch angle (three input parameters), and output 

power (one output parameter). The effect of turbulence intensity (TI) and wake effect was a 

primary consideration in our turbine selection process. Turbines situated midway and bottom 

of a wind farm will usually experience incoming turbulence due to wind exiting from preceding 

wind turbines. However, this phenomenon depends on the topological spacing of wind turbines 

in the wind farm. The terrain of a wind farm also influences the nature of on-coming 

experienced by each turbine. Turbines situated in hilly sites will experience more laminar wind 

at higher speeds while those situated at valley sites will experience less laminar winds at lower 

speeds. Due to this asymmetry, care must be taken in the selection process to include all terrain 

conditions. 
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2.2  Artificial Neural Networks 

Artificial neural networks (ANN) are one of the most essential computational 

intelligence tools, and they're utilized for a number of tasks like function approximation and 

pattern recognition [12]. ANNs are inspired by biological neural systems. They are made up of 

a collection of simple processing pieces known as neurons or nodes that are linked together by 

links, each having a value regarded as their weights. Each neuron can receive information from 

the neurons that are inputs to them and any other external input, its output information is 

received as input information into another neuron. Using information inputted into each 

neuron, they create an output, which is a linear combination of the inputs. Consider Equation 

(2), 𝑦𝑖 is the output of the neuron 𝑖, 𝑥𝑗 is the input value to the output neuron, indexed as j, 𝑤𝑖𝑗 

is the weight of the link between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  neurons, 𝜃𝑖   is the bias of the neurons, and 𝑓𝑖   is 

the activation function. This can be linear or non-linear. A non-linear activation function 

(sigmoid, Gaussian, etc.) is preferable as it allows the network to act more universally [7]. 

 𝑦𝑖 = 𝑓𝑖  ∑ 𝑤𝑖𝑗 . 𝑥𝑗 −
𝑛

𝑗=0
𝜃𝑖  (2) 

Neural networks are divided into feed forward neural networks (unidirectional) or back 

propagation (recursive) neural networks. For the feed forward type, neurons are connected in 

a single direction from input to output. In back propagation neural network, the link between 

neurons is in both directions. The arrangement of the neurons determines the structure of the 

neural network. Neurons are arranged in a sequence regarded as layers. A typical neural 

network will comprise of an input layer, 1 to ∞ number of hidden layers, and an output layer. 

The most peculiar property of a neural network is their ability to learn from the data. The speed 

at which this learning occurs (steps taken to arrive at a local minimum) is influenced by the 

learning rate. Learning means adjusting the weights of the connection between neurons in order 

to improve accuracy [7]. 

2.3 Radial Basis Function Neural Networks 

The RBFNN architecture was first proposed by Broom head, Lowe in their work 

captioned ‘Multivariate Functional Interpolation and Adaptive Networks’ 1988 [42].  RBFNNs 

consist of three layers by design: the input layer, the hidden layer, and the output layer [43]. 

Figure 2 represents the typical structure of a RBF network with a single output node for single 

value tasks (e.g., regression etc.). The input node distributes the k input variables to the m nodes 

of the hidden layer. In the hidden layer, each node has a center with the same dimensions as 

the number of input variables. The hidden layer applies a non-linear transformation to the input 



 

 
9 

space, transforming it into a higher-dimensional space [44]. The activity µ𝑙(𝐱(f)) of the 

lth node is the Euclidean normal of the difference between the f-th input vector and the node 

center and is given in Equation (3) as: 

 µ𝑙(𝐱(f)) = ||𝒙(𝑓) − ẋ𝒍|| = √∑(𝒙(𝑓) − ẋ𝒍,𝒊)2

𝑘

𝑖=1

,       𝑓 = 1, … , 𝑓 (3) 

where f is the total number of available data, 𝒙𝑇(𝑓) = [𝑥1(𝑓), 𝑥2(𝑓), … , 𝑥𝑘(𝑓)] is the input 

vector, and 𝒙𝑙
𝑇 = [ẋ𝟏 𝒍, ẋ𝟐 𝒍,…,ẋ𝒌 𝒍,

] is the centre of the lth node. 

The activation function for each node is a radially symmetric function. In this work, we employ 

the sigmoid function (Equation (4)). 

 𝑔(µ) =
1

1 +  𝑒−µ (4) 

The hidden node response is denoted by 𝐳(f) (Equation (5)): 

 𝐳(f) = [𝑔 (µ1(𝒙(𝑓))) , 𝑔 (µ2(𝒙(𝑓))) , … , 𝑔 (µ𝑚(𝒙(𝑓)))] 
(5) 

The output of an RBF network contains y unit, where y is the singular possible output value. 

The numerical output y(f) is produced by a linear combination of the hidden nodes’ response 

(Equation (6)): 

 𝑦(𝑓) = 𝐳(f). 𝐰𝑛 =  ∑ 𝑤𝑙,𝑛𝑔 (µ1(𝒙(𝑓)))

𝑚

𝑖=1

 (6) 

where 𝐰𝑛 = [𝑤1,𝑛, 𝑤2,𝑛, … , 𝑤𝑚,𝑛]𝑇
 is a vector containing the synaptic weights corresponding 

to the output n.  

The synaptic weights are commonly determined using linear regression of the hidden layer 

outputs to the real measured output after the RBF centers and non-linearities in the hidden layer 

have been fixed. In most cases, linear least squares in matrix form can be used to solve the 

regression problem [44]. 

 𝐖 = (𝒁𝑇 . 𝐙)−1. 𝒁𝑇 . 𝒀 (7) 

where 𝒁 = [𝒛(1), 𝒛(2), … , 𝒛(𝐹)]𝑇 is a matrix containing the hidden layer responses for all 

input vectors. 𝑊 =  [𝑤1, 𝑤2, … , 𝑤 𝑛] is a matrix containing all the synaptic weights for the 

output layer and converges to a scalar containing the target vector. The target vector y(f) carries 

the information of the value predicted by the f-th input vector [44]. 
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2.4 Multi-Layer Perceptron (MLP) Neural Networks 

A MLP is a supplement of feed forward neural network. It consists of the basic 3-layers 

of a neural network, just as in the RBF neural network [45]. They are utilized for generic 

approximation because they can model any continuous function. A perceptron receives n 

features as input 𝑥 = 𝑥1, 𝑥1, … , 𝑥𝑛, each of these features has an associated weight. The features 

inputted into the network must be numeric, hence, all non-numeric features must be first 

converted into numbers before being inputted into the network. The input features are passed 

on to an input function u, the function u computes the weighted sum of the input features [46]. 

 𝑢(𝒙) = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (8) 

The result u(x) is passed onto an activation function f, this function assists in producing the 

output of the perceptron. The activation function utilized in this step is a RELU. 

 𝑦(𝑥) = 𝑀𝐴𝑋(𝟎, 𝑥) (9) 

 

 

 

𝑦(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0 (10) 

Learning in MLPs, as in RBFs consist of adjusting the weights in order to reduce the error in 

predicting the training data. Learning is a back propagation task achieved by a back propagation 

algorithm (optimizer), that attempts to minimize the loss in predicting the ground truth. 

2.5 Optimizers 

These are methods and algorithms utilized by a neural network for back propagation, 

they assist in adjusting the weights based on a user defined learning rate with the aim of 

reducing prediction losses. There are varieties of optimizers. We will focus on three types [47]: 

1. Stochastic Gradient Descent (SDG):  This is a revised version of gradient descent, 

where the model parameters are updated on every iteration. Gradient descent is an 

optimization algorithm for finding the local minimum of differentiable function. The 

basic representation is 𝜃𝑗 ← 𝜃𝑗 − 𝛼
𝛿

𝛿𝜃𝑗
𝑗(𝜃). In gradient decent, we take the whole data 

for each iteration. However, in SGD we randomly select batches of data. The procedure 

is to select the initial parameters v and learning rate r, and thereafter randomly shuffle 

the data at each iteration to reach an approximate minimum [48]. 

 𝑣 ≔ 𝑣 − 𝜂∇𝑄𝑖(𝑣) (11) 
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2. Adam: It is also called Adaptive Moment Estimation algorithm. It combines root-mean-

square propagation and momentum-based gradient descent to achieve better 

optimization. It introduces two hyper-parameters 𝛽1 𝑎𝑛𝑑 𝛽2; their optimal values have 

been found to be 0.9 and 0.99 respectively [48]. The root-mean-square prop. [𝑉𝑑𝑤 =

𝑉𝑑𝑤

(1−𝛽1
𝑡)

]  is combined with the corrected momentum-based gradient descent, [𝑆𝑑𝑤 =

𝑆𝑑𝑤

(1−𝛽2
𝑡)

] to yield the Adam optimizer. 

 𝑊𝑛𝑒𝑤 = 𝑊 − 𝜂
𝑉𝑑𝑤

√𝑆𝑑𝑤 + 𝜀
 (12) 

3. RMSProp: This is short for root-mean-square propagation. This is an adaptive learning 

rate method proposed by Geoffrey Hinton. The algorithm focuses on accelerating the 

optimization process by decreasing the number of function evaluations required to 

reach the local minima. It retains the moving average of squared gradients for every 

weight and divides the gradients by the square root of the mean square [49]. 

 𝑣(𝑤, 𝑡) ≔ 𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))2
 (13) 

where gamma is the forgetting factor, an optimal value determined experimentally to 

be 0.95 weights, are updated by the formula below. 

 
𝑤 ≔ 𝑤 −

𝜂

√𝑣(𝑤, 𝑡)
∇𝑄𝑖(𝑤) (14) 

2.6 Evaluation Metrics 

These metrics statistically compares the models’ output distribution with the ground truth 

distribution. In this work, we have considered mean absolute error (MAE), root-mean square 

error (RMSE), coefficient of determination (R2) given in Equations (15), (16), and (17) 

respectively: 

 𝑀𝐴𝐸 =
1

𝑛
∑(|ṕ𝑖 − 𝑃𝑖|) =

𝑁

𝑖=1

 
1

𝑛
∑ 𝐴𝐸(𝑖)

𝑁

𝑖=1

 (15) 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ṕ𝑖 − 𝑃𝑖)2

𝑁

𝑖=1
= √

1

𝑁
∑ 𝐴𝐸2

𝑁

𝑖=1
(𝑖) (16) 
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 𝑅2 =
(𝑎 ∑ 𝑃) + (𝑏 ∑ 𝑋𝑃) − 𝑛Ṕ2

(∑ 𝑃2) − 𝑛Ṕ2
 (17) 

2.7 Methods and Algorithms 

A quantile defines a particular part of a data set by assigning each point within a 

distribution to be either above or below a certain limit [50]. In Figure 3, the distribution for q-

quantile plots for all values  𝑎 𝜖 𝑆;  the probability that x falls within quantile q is given by 

𝑃[𝑋 < 𝑥] ≤ 𝑘/𝑞 (where x is a k-th q-quantile for a variable X), and the probability that x falls 

without the quantile q is given by 𝑃[𝑋 < 𝑥] ≥ 1 − 𝑘/𝑞 considering also that x is the k-th q-

quantile for a variable X. The distribution is represented mathematically in Equation (18). 

 𝑃[𝑋 < 𝑥] =
1

√2𝜋
∫ 𝑒−

𝑡2

2  𝑑𝑡
𝑥

∞
 (18) 

The α-th quantile 𝜃𝛾(∝), 0 <∝< 1 of a finite population vector 𝑦 = (𝑦1, … , 𝑦𝑁) is defined as 

 𝜃𝛾(∝) = inf {𝑡: 𝐹𝛾(𝑡) ≥ 𝛼} (19) 

where 𝐹𝛾(𝑡) is the distribution function 𝛾. In case Ḟ𝛾(𝑡), an estimator of 𝐹𝛾(𝑡), is a monotonic 

non-decreasing function of t, the customary estimator of 𝜃𝛾(∝) is obtained as 

 𝜃𝛾(∝) = inf {𝑡: Ḟ𝛾(𝑡) ≥ 𝛼} (20) 

Let Ḟ𝛾(𝑡) be the customary estimator of 𝐹𝑥(𝑡). In case the population α-th quantile 𝜃𝑥(∝) of x 

is known, the ratio estimator of 𝜃𝛾(∝) is given by 

 Ӫ𝑟𝛾(∝) =
Ӫ𝛾(∝)

Ӫ𝑥(∝)
𝜃𝑥(∝) (21) 

Similarly, a difference estimator of 𝜃𝛾(∝) is given by:  

 Ӫ𝑑𝛾(∝) = Ӫ𝛾(∝) − 𝑅{Ӫ𝑥(∝) − 𝜃𝑥(∝)} (22) 

where 𝑅 =
∑

𝑦𝑖
𝜋𝑖

𝑖∈𝑆

∑
𝑥𝑖
𝜋𝑖

𝑖∈𝑆

 is a consistent estimator of the population ratio 𝑅 = 𝑌/𝑋. 

Both estimators Ӫ𝑟𝛾(∝) and Ӫ𝑑𝛾(∝) reduce to 𝜃𝛾(∝) if 𝑦𝑖 ∝ 𝑥𝑖∀𝑖 ∈ 𝑈. In this case, the 

variance become zero [51]. 

 

Algorithm 1: Quantile Filtering 

Input:    [x1, x2, x3]: from dataset of initial size, in a Data Frame. 

               [y]: from dataset of initial size, in the same Data Frame. 

Output: [x1, x2, x3]: returned Data Frame of filtered size. 

               [y]: returned in same Data Frame, of filtered size. 
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1. Divide Data Frame into sub-Frames up to 50. 

2. Define a single Data Frame, and set the power equal to the max power. 

3. Define the distribution. 

4. Apply quantiles to the distribution for each sub-Frame to remove outliers  

5. Merge all Data Frames. 

6. END 

2.8 Network Architecture 

            The base parameters of the neural networks are specified for the network creation. A 

total of three neural networks are developed and compared for the best performing networks. 

It comprises of an RBF network with a single hidden layer, two variations of MLP network, 

one with 4-hidden layers of varying nodes, the other with 6-hidden layers of varying nodes. A 

link to the code is provided for model visualization [see Supplementary data [C]]. Figure 4 

articulates the entire modelling process. The cleaned data is passed into a neural network 

containing an optimizer that assists in the back propagation of the model. It evaluates the output 

of the forward process by some user-defined metrics, it then employs the user specified 

activation function in an attempt to reduce loss. 

2.9   Case Study 

2.9.1 Data Selection 

A temporal 10-minutes interval dataset from mid-2016 to mid-2022, was acquired from 

Kelmarsh and Penmanshiel wind farms in the UK (see Supplementary data [A], and [B], for 

the dataset). Out of these years, only a single year with time (dynamic year) can be used in 

developing the model. A plot of wind speed with time for all available years are plotted to aid 

visual identification of the most dynamic year (Figure 5). The choice of the year to be used 

depends on how randomly distributed wind speed to time appeared for all available years. The 

year with the highest standard deviation of wind speed, found to be 2020, is thus taken to be 

the most dynamic year (Figure 5a). Figure 5b shows the variation of wind speed to time for the 

year 2020.  

It was discussed in Karamichailidou et al., [12], that the variations in TI due to field 

conditions such as relative position of turbines, local orography, and wake effects of 

neighbouring wind turbines, have a significant effect on the power output. Hence, for a generic 

wind turbine model, the effect of turbulence intensity must be considered. We utilized SCADA 

data from three turbines selected from each of the two wind farms. The three turbines were 
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selected with the aim of capturing power variations resulting from TI, as influenced by the 

relative positions of the turbines, and topography of the respective farms. Based on the most 

prevalent wind direction for the year, turbines at the top of the wind farm will experience little 

or no TI, thus resulting in limited/no reduction in power output, while wind turbines at midway 

of the wind farm will experience the most power reduction due to TI and wake effect, 

irrespective of the wind direction. However, wind turbines at the bottom of the wind farm will 

experience some power reductions due to TI. An area view (by satellite) of the wind farms and 

turbine numbers used in the selection of the three turbines is given in Figure 6. 

Terrain variation is also an important factor to be considered in wind turbine model 

development. As height increases, wind speeds tend to be faster and more laminar. At hill sites, 

the wind will be laminar because there is little obstruction to air flow, whereas at valley sites 

there tends to be slower and more turbulent wind speed. Hence, topographic consideration is 

critical to selecting the best turbine data from SCADA, needed for modelling. Figure 7 

represents the terrain maps of the selected wind farms, indicating hilly and valley portions 

needed for the dataset selection process. It can be seen that the contour maps in Figure 7 show 

very little variation in land topography. The topographical variations will constitute only a 

slight variation in wind speed from turbine to turbine within the selected wind farms. 

2.9.2 Data Visualization 

A plot of wind speed to power generated is the basis for this analysis. Figure 8 shows a 

scatter plot of wind speed to power output for the six turbines (from the two wind farms) used 

for model development. It is evident from Figure 8 that the actual curve of these wind turbines 

deviates from the standard manufacturer’s power curve. Generally, the actual power curve of 

a wind turbine will contain abnormal values (outliers), especially from parameters such as wind 

speed values close to cut-in or cut-out speed, negative power values, non-operational periods, 

invalid, missing or corrupted data due to sensor and pitch malfunction, dirt or icing on blades, 

etc. [52]. Hence, to aid the development of an accurate model, a data cleaning process must be 

employed to filter out all erroneous data. 

2.9.3 Data Cleaning 

There are several methods employed in literature for the filtration of erroneous data. 

However, most are computationally expensive due to their utilization of complex mathematics. 

In this work, we proposed a filtering approach which is based on quantiles set on a distribution. 

This is achieved by dividing data into wind speed bins and setting user defined quantiles. 

Quantile values are obtained experimentally and may differ from one wind farm to another. A 
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link to the database containing the code has been provided to aid the visualization of the set 

quantiles [see Supplementary data [C]]. The output (filtered power curve) from the filtering 

algorithm is shown in Figure 9. 

A test of the efficiency of any filtering algorithm is the quantity of data points it regards 

as outliers in its process of cleaning the dataset. A more efficient filtering algorithm will filter 

out fewer data points in order to achieve a clean dataset, while a less efficient filtering algorithm 

will filter out more data points in order to achieve a clean dataset. In literatures, models utilized 

for data cleaning are static, in that upon implementation, the data points filtered out is constant. 

However, in this work, outputs of the quantile filtering (QF) method vary the amount of filtered 

data points contingent on user pre-set quantiles. The amount of data points cleaned out based 

on the quantiles set developed in this research, is shown in Table 1. 

After filtering, the dataset passes a stage of batch normalization. This standardizes the 

dataset between 0 and 1. The efficiency and speed of a neural network is enhanced when we 

convert the variable data to values between 0 and 1 for the fitting process. Normalized data are 

then split into training, testing and validation datasets. In this research, the dataset from each 

turbine was divided randomly using 65% for training, 25% for validation, and 20% for testing. 

This is shown in Table 2. 

2.9.4 Implementation of Algorithm  

The visual analysis of the actual wind speed to power plot of a wind turbine is the basis 

for the choice of the most optimum quantile for filtering. An assessment of the distribution of 

the dataset must be carried out during the specification of quantiles. A skewed distribution of 

the dataset will constitute poor filtering even with the most generic quantile; it thus requires a 

rather unique quantile values that should be selected based on the nature of its distribution. For 

the quantiles used in this research, a link to the database containing the code is provided [see 

Supplementary data [C]]. The filtered data comprising three input parameters (density 

normalized wind speed, wind direction, and blade pitch angle) are fed into three neural 

networks, with the aim of accurately predicting the power output. These input parameters were 

found to improve the modelling accuracy of power curve models, as each constitute an 

influence on the power output of a wind turbine [53, 54]. A RBF network of 1-hidden layer, a 

MLP network of 4-hidden layers, and a MLP network of 6-hidden layers were used for 

modelling. There is an increase in the number of hidden layers for the second MLP network; 

this was done with the aim of inspecting the performance of MLP network with more hidden 

layers. The architectures are indicated in Table 3. 
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3. Results and Discussion 

From Table 4, data 1 to 3 are obtained from Kelmarsh wind farm, while data 4 to 6 are 

from Penmanshiel wind farm. The differences in the accuracies between datasets from the same 

wind farm is due to the variation of the data distribution, while the differences recorded 

between datasets from different wind farms are as a result of the differences in field conditions 

at both farm sites. An analysis of the data distribution was performed within our code using the 

seaborn library. 

The field conditions at Kelmarsh wind farm are generally more dynamic than that at 

the Penmanshiel wind farm. Hence, the fitting accuracy is slightly less for the Kelmarsh wind 

farm than the Penmanshiel wind farm. The test for a good model is its generalization ability. 

The standard deviation of the datasets from both wind farms is minimal, thus indicating that 

the model generalizes appropriately. There is a slight variation in performance when various 

optimizers are applied on the RBF network. The best optimizer for this network is the adam 

optimizer as it has shown better performance on all the datasets compared to the other 

optimizers (though not far behind). All optimizers performed generally well on the RBF 

network. In this work, the RBF network is generally appropriate for modelling WTPC 

regardless of field conditions. Data 1 and 4 are obtained from wind turbines at the top of the 

wind farms where TI has negligible effect on power output. Data 2 and 5 are obtained from 

wind turbines midway the wind farms, and are mostly affected by TI and wake effect. Data 3 

and 6 are obtained from wind turbines at the bottom of the wind farms; these are somewhat 

influenced by TI and wake effect. In this work, it is worth noting that we obtained similar fitting 

accuracies regardless of the position of the wind turbine. 

We ran the models on Google Collaboratory (12.63GB GPU), for 50 epochs. Figure 10 

depicts the loss to epoch plot for each optimizer. The model arrived minimum loss within just 

a few epochs, hence, more time could thus be saved by reducing the number of epochs. The 

MLP model is generally sensitive to optimizers, only the adam optimizer performed 

appropriately. It can be seen from Figure 11 that the rmsprop and sgd optimizers worked to 

increase the loss rather than to decrease it. Therefore, care should be taken in choosing the right 

optimizer for an MLP model.  

The variations found in the dataset due to field conditions, do not affect the accuracy 

of the MLP model. Taking the values of the adam optimizer as a case study, the values of both 

MAE and R2 vary only slightly across data 1 to 6. This is an indication that the MLP network 

generalizes properly for all turbines within a wind farm, and for turbines in multiple wind 



 

 
17 

farms. The best performing case of the 4-input MLP network outperforms all cases in the RBF 

network. Generally, an increase in the number of hidden layers of an MLP network reduces the 

sensitivity of the model to change in optimizer. However, it also slightly increases the models’ 

sensitivity to dataset distribution. This can be observed in Table 6 with the standard deviation 

of the 6-hidden layers of the MLP network being relatively more than that of the 4-input MLP 

network. The 6-hidden layers MLP network generally requires more time to train, but results 

in higher fitting accuracy than the other models. From Figure 12, it can be seen that the network 

accommodates the use of the rmsprop optimizer but not the sgd optimizer. 

Table 7 summarises the results of the application of QF-NN algorithm in comparison 

with the best performing parametric and non-parametric models found in literature, and with 

comparison to the manufacturer’s power curve. From Table 7, QF-NN models outperform 

slightly better than all other parametric and non-parametric models in terms of fitting accuracy. 

Generally, the standard deviation of the QF-NN’s fitting accuracy, is found to be relatively 

small. It is also evident from Table 7, that hybrid non-parametric models utilizing 

computational intelligence (CI), generally perform better than parametric or other non-

parametric models. However, they are computationally expensive and will take a longer time 

to compute. QF-NN proves to be an excellent alternative to other hybrid non-parametric 

models, in that it outperforms them in terms of fitting accuracy and also computes in very little 

time regardless of the size of the data. This is important if these models are to be implemented 

for real time power prediction and forecasting. The best performing model is the QF-MLP with 

4-hidden layer using adam optimizer, having MAE of 15.3 and R2 of 0.996. Though it is the 

best performing model, other NN models are also found to be close in performance. 

An overall analysis on the QF-NN algorithm is necessary in order to justify the research 

objectives. The input variables of the models are density, wind speed, temperature, and blade 

pitch angle. In the literature, very few works have utilized more than one input variable, this 

was mainly due to the methods employed for power curve modelling that accommodates just 

one input variable. It is worth noting that models developed under such conditions cannot 

accurately represent actual power curves at field conditions. The four variables considered in 

this research are those that majorly contribute to the power output of a wind turbine. 

Quantile filtering only considers wind speed and power output in the cleaning process 

because it is a two-dimensional cleaning process requiring 2-parameters to define the plane. 

The two-dimensional cleaning is sufficient to filter out outliers, and it does that in less time 

than a higher dimensional cleaning algorithm. Passing the cleaned data into a shallow neural 
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network harnesses the powers of the network for efficient fitting of the input parameters to the 

output power in a supervised framework. We have also compared the accuracy and sensitivity 

of RBF and MLP networks used for the WTPC modelling. 

4. Conclusion 

In this work, we introduced a new method of obtaining a very accurate WTPC model, 

by taking into account several variables (found to affect power output from a wind turbine), 

other than wind speed only. These variables are density, wind speed, temperature, and blade 

pitch angle. The datasets were obtained from Kelmarsh and Penmanshiel wind farms in 

Haselbach and Grantshouse, UK, respectively. Since wind turbine performance vary with TI, 

we considered the topography of the locations to aid the selection of appropriate turbines to be 

selected for the modelling.  

We utilized quantile filtering approach, which is a data cleaning method where a set 

point or quantile represents relevant data points (right of the set point), and outlier data points 

(left of the set point). The outlier data are cleaned out. The filtered data is passed to three 

models namely: RBF, QF-MLP with 4-hidden layers, and QF-MLP with 6-hidden layers. Their 

results were compared in order to obtain the best performing model for WTPC modelling, 

based on shallow neural network. We also compared the performance of the newly developed 

model with parametric and non-parametric models found in literatures [see ref. 1, 12, 35, 55]. 

We found that the QF-MLP with 6-hidden layers, gave the best performance and also the most 

sensitive model to dataset distribution. The QF-MLP networks with 4- and 6-layers are 

sensitive to the selected optimizer. The RBF network is the most stable network because it has 

the least standard deviation between the datasets. The three models outperform all parametric 

and non-parametric models in terms of fitting accuracy, and they also compute in tremendously 

reduced time than the other hybrid models (i.e., TS-NSFM, SFM).  

We have developed a WTPC model that is generic to all turbines in wind farms, taking 

topography and other field conditions into consideration during the dataset selection and 

modelling.  
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[B] Penmanshiel Wind Farm Data. https://zenodo.org/record/5946808#.YsGnSXbMLIU 

[C] Link to the code: https://github.com/henrii1/wind-turbine-power-curve-modelling.git 
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Figure 1: A Typical Wind Turbine Power Curve 

 

 

 

Figure 2: Typical Structure of an RBFNN 
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Figure 3: Normal Distribution for Quantile Specification 
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Figure 4: QF-NN Algorithm 
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Figure 5: Variation in wind speed with time for: (a) various years, and (b) selected year 

 

  

(a) (b) 

Figure 6: Satellite Image of (a) Kelmarsh and (b) Penmanshiel Wind Farms showing the turbine numbers (Source: 

ref. [37, 38]) 
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Figure 7: The Developed Contour Maps for (a) Kelmarsh, and (b) Penmanshiel Wind Farms  
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f) 

Figure 8: Actual Power output as a function of wind speed for: (a) Turbine 1, (b) Turbine 2, (c) Turbine 3, (d) 

Turbine 4, (e) Turbine 5, (f) Turbine 6 
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f)  

Figure 9: Filtered Power Curve for: (a) Turbine 1, (b) Turbine 2, (c) Turbine 3, (d) Turbine 4, (e) Turbine 5, and (f) 

Turbine 6 
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(c) 

Figure 10: Plot of Loss to Epoch of the RBF Network: (a) adam, (b) rmsprop, and (c) sgd 

 

 

  

(a)   



13 
 

 

(b) 
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Figure 11: Plot of Loss to Epoch of the 4-Hidden layer MLP Network: (a) adam, (b) rmsprop, and (c) sgd 
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(c) 

Figure 12: Plot of Loss to Epoch of the 6-Hidden layer MLP Network: (a) adam, (b) rmsprop, and (c) sgd 



Table 

Table 1:  Percent Data Loss due to Filtering 

 Before Cleaning After Cleaning Percent Data Loss 

Dataset 1 52704 43425 17.6% 

Dataset 2 52704 41196 21.8% 

Dataset 3 52704 41278 21.6% 

Dataset 4 52704 37247 28.1% 

Dataset 5 52704 35282 29.5% 

Dataset 6 52704 37760 27.9% 

 

 

 

 

Table 2: Division of Dataset  

 Training Size Validation Size Test Size 

Dataset 1 28226 10856 8685 

Dataset 2 26777 10299 8239 

Dataset 3 26830 10319 8255 

Dataset 4 24210 9311 7449 

Dataset 5 22933 8820 7056 

Dataset 6 24544 9440 7552 

 

 

 

 

 

 

Table 3: Architecture of the Developed Models 

 Model Name Input 

Layer 

Hidden 

Layer 

Output 

Layer 

Activation Loss Function 

Model 1 RBF  1  1 1 sigmoid Binary 

crossentropy 

Model 2 MLP1 1 4 1 relu Binary 

crossentropy 

Model 3 MLP2 1 6 1 relu Binary 

crossentropy 
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Table 4: Test Result for Model 1 (RBF Model) 

 optimizer MAE (KW) RMSE (KW) R2 Computation time (sec) 

Data 1 adam 21.7 30 0.9924 145.94 

rmsprop 21.9 30 0.9923 202.69 

sgd 33.0 42.6 0.9833 142.50 

Data 2 adam 23.7 32.1 0.9899 133.99 

rmsprop 23.6 32.7 0.9897 142.96 

sgd 35.2 46.6 0.9789 142.48 

Data 3 adam 21.1 28.7 0.9917 142.59 

rmsprop 21.2 29.6 0.9913 142.475 

sgd 31.9 42.2 0.9815 142.511 

Data 4 adam 16.8 22.8 0.9955 114.999 

rmsporp 17.1 23.3 0.9951 124.435 

sgd 23.9 30.1 0.9920 111.959 

Data 5 adam 17.3 23.8 0.9950 142.571 

rmsprop 17.8 24.3 0.9933 142.663 

sgd 28.1 36.6 0.9880 112.231 

Data 6 adam 18.5 25.6 0.9945 142.561 

rmsprop 17.3 24.7 0.9948 142.676 

sgd 25.7 32.5 0.9911 142.507 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Test Result for Model 2 (QF-MLP with 4-Hidden Layer) 

 optimizer MAE (KW) RMSE (KW) R2 Computation time (sec) 

Data 1 adam 21.6 28.6 0.9932 202.680 

rmsprop 50.2 60.8 -2.2444 166.041 

sgd 45.7 56.8 -1.8431 140.157 

Data 2 adam 23.4 31.5 0.9902 142.671 

rmsprop 38.2 50.1 -1.4062 202.954 

sgd 98.8 100.3 -9.3963 143.103 

Data 3 adam 21.7 28.8 0.9915 138.004 

rmsprop 35.4 46.77 -1.2681 159.599 

sgd 122.6 125.8 -15.0733 134.258 

Data 4 adam 16.1 22.1 0.9960 142.637 

rmsporp 42.6 55.3 -1.4986 142.953 

sgd 51.3 63.2 -2.2674 115.142 

Data 5 adam 16.7 23.1 0.9953 121.813 

rmsprop 36.7 49.4 -1.1796 140.560 

sgd 144.8 148.3 -19.0171 116.485 

Data 6 adam 19.4 27.7 0.9940 125.826 

rmsprop 46.1 58.4 -1.7645 202.962 

sgd 49.5 61.1 -2.0359 121.506 

  

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Test Result for Model 3 (QF-MLP with 6-Hidden Layer) 

 optimizer MAE (KW) RMSE (KW) R2 Computation time (sec) 

Data 1 adam 25.6 35.0 0.7495 202.733 

rmsprop 43.8 55.06 -1.6645 181.260 

sgd 742.5 743.4 -486.80 202.629 

Data 2 adam 40.9 52.1 -1.6036 202.737 

rmsprop 24.0 32.2 0.9898 174.694 

sgd 38.2 49.8 -1.373 140.108 

Data 3 adam 22.5 30.5 0.9905 202.761 

rmsprop 34.4 46.4 -1.2357 203.162 

sgd 35.6 47.1 -1.3049 137.383 

Data 4 adam 15.3 21.5 0.9962 142.753 

rmsporp 31.5 40.0 0.9871 151.888 

sgd 33755 3755 -11680 122.132 

Data 5 adam 28.1 44.8 0.9825 142.739 

rmsprop 16.9 23.1 0.9925 203.155 

sgd 47.4 57.9 -1.9906 120.360 

Data 6 adam 17.5 24.2 0.9953 142.737 

rmsprop 417.3 543.5 -1.4034 203.118 

sgd 421.0 547.6 -1.423 125.839 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Comparison of Results of Parametric and Non-parametric Models 

 Hidden layers MAE (KW) R2 score Computational time 

(s) 

QF-RBF(adam) 1 16.8 0.995 114.999 

QF-RBF(rmsprop) 1 17.1 0.995 124.656 

QF-MLP1-(adam) 4 16.1 0.996 142.637 

QF-MLP2-(adam) 6 15.3 0.996 142.753 

TS-NSFM 1 18.935 0.994 4896 

NSFM 1 46.823 0.955 - 

SFM 1 19.103 0.992 987 

Cubic Spline - 32.7123 0.985 1.50 

SVM - 27.345 0.989 80 

GP - 23.497 0.990 45.43 

Logistic Function - 29.956 0.986 1.89 

Parametric - 33.545 0.984 1.46 

Modified IEC-BINS - 29.453 0.989 1.32 

Manufacturer power curve - 40.234 0.979 - 
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